🪀 Soal Sbmptn Tentang Persamaan Lingkaran
Kumpulansoal dan pembahasan SBMPTN bidang study matematika tentang aplikasi turunan dan garis singggung kurva. Pada soal ditanya persamaan garis singgung kurva di titik berabsis 1, maka substitusi nilai x = 1 untuk mencari titik potongnya : Luas sebuah lingkaran adalah sebuah fungsi dari kelilingnya. Jika keliling sebuah lingkaran
TESKEMAMPUAN DASAR SAINS DAN TEKNOLOGI. 2. Himpunan penyelesian pertidaksamaan √6 + √x - √x 2 < 2 adalah . 3. Diberikan lingkaran dengan persamaan (x - 3) 2 + (y + 4) 2 = 49 . jarak terjauh titik pada lingkaran tersebut ke titik asal adalah . 4. Bila sin x + cos x = a, sin 4 x + cos 4 x=. 5.
Jikalingkaran tersebut menyinggung garis y = x di titik (a,a) dengan a > 0, maka persamaan garis lingkaran tersebut adalah . A. x 2 + y 2 - 4ax + 2a 2 = 0 B. x 2 + y 2 + 4ax + 2a 2 = 0
X- 32 y - 42 62. Contoh Soal Persamaan Lingkaran- Bentuk umum dari persamaan lingkaran adalah x a. Dengan x1 4. Untuk pembahasan yang lebih lengkap akan di bahasa pada artikel selanjutnya. 2014 in Kelas XI SMA. 1 Diberikan persamaan lingkaranL x2 y2 25. Persamaan Lingkaran Berpusat di O00 Persamaan Lingkaran Berpusat di Oab.
ContohSoal Persamaan Trigonometri Kelas 11 Dan Pembahasannya 24 July 2022; Contoh Soal Rasional Dan Irasional 24 July 2022; Psikotes Kerja Matematika Dasar 24 July 2022; Home / Dessy Ardilani 1 / Soal Sbmptn Tentang Persamaan Lingkaran. Soal Sbmptn Tentang Persamaan Lingkaran.
persamaanlingkaran , un matematika ipa sma 2015 pembahasan no 05 Persamaan lingkaran yang berpusat di (1,4) dan menyinggung garis 3x-4y+3
SOALJAWAB MATEMATIKA SAINTEK . PEMBAHASAN SBMPTN Soal 1 Diketahui dua lingkaran berpusat di titik O(0,0) berjari-jari r dan R dengan r < R. Sebuah garis menyinggung lingkaran dalam di titik E dan memotong lingkaran luar di. titik P. Jika diketahui selisih luas antara lingkaran luar dan lingkaran dalam 36 dan
UTBK2019 SBMPTN (3) Persamaan Fungsi Kuadrat 7 Detik PKB dari paman apiq source - AKAR-AKAR PERSAMAAN KUADRAT. By icpns Posted on April 17, 2019. Berikut Adalah Cuplikan Video Pembelajaran Berisikan Tentang Pembahasan Soal SBMPTN Tahun 2018 Dalam Kaitannya Kita Mempersiapkan Diri Menghadapi SBMPTN 2019. Contoh Soal: Soal Asli UTBK
. Berikut ini adalah soal persamaan lingkaran UTBK SBMPTN dan pembahasannya. Soal persamaan lingkaran yang dibahas merupakan soal-soal UTBK 2019 dan SBMPTN 2018. Pada UTBK 2019 soal persamaan lingkaran masuk dalam kategori jenis tes kompetensi akademik TKA kelompok Matematika saintek sedangkan pada SBMPTN 2018 termasuk jenis tes kompetensi dasar atau TKD 1 UTBK 2019Jika lingkaran x2 + y2 = 1 menyinggung garis ax + by = 2b, maka = …A. 1/4B. 1/2C. 3/4 D. 1 E. 2PembahasanPada soal ini diketahuiPersamaan garis singgung ax + by – 2b = 0k = r = 1Titik pusat 0, 0Cara menjawab soal ini sebagai berikutPembahasan soal 1 UTBK 2019 persamaan lingkaranSelanjutnya subtitusi a2 = 3b2 ke = = Jadi soal ini jawabannya 2 UTBK 2019Jika garis y = mx + b menyinggung lingkaran x2 + y2 = 1, maka nilai b2 – m2 + 1 = …A. -3B. -2C. 0D. 2E. 3PembahasanSubtitusi garis y ke persamaan lingkaran sehingga diperolehx2 + mx + b2 = 1x2 + m2x2 + 2mbx + b2 = 1m2 + 1 x2 + 2mb x + b2 – 1 = 0D = 0 syarat garis menyinggung lingkaranb2 – 4ac = 02mb2 – 4 . m2 + 1 . b2 – 1 = 04m2 b2 = 4 m2b2 – m + b2 – 1m2 b2 = m2b2 – m + b2 – 1b2 – m2 – 1 = m2b2 – m2b2 = 0b2 – m2 – 1 + 2 = 0 + 2b2 – m2 + 1 = 2Soal ini jawabannya 3 UTBK 2019Diketahui titik P 4, a dan lingkaran L x2 + y2 – 8x – 2y + 1 = 0. Jika titik P berada dalam lingkaran L, maka nilai a yang mungkin adalah…A. 1 < a < 3B. -3 < a < 5C. -5 < a < -3D. 3 < a < 5E. – 5 < a < 3PembahasanSyarat titik P 4, a didalam lingkaran adalah x2 + y2 – 8x – 2y + 1 < 0. Jadi cara menjawab soal ini subtitusi nilai P 4, a kedalam syarat tersebut seperti dibawah + a2 – 8 . 4 – 2a + 1 < 016 + a2 – 31 – 2a < 0a2 – 2a – 15 < 0a + 3 a – 5 < 0a = – 3 atau a = 5-3 < a < 5Soal ini jawabannya 4 UTBK 2019Sebuah lingkaran mempunyai pusat a, b dengan jari-jari 12 dan menyinggung garis 3x + 4y = 5. Nilai 3a + 4b yang mungkin adalah…A. -65 dan 75B. -60 dan 70C. -55 dan 65D. -50 dan 60E. -45 dan 55PembahasanPembahasan soal UTBK 2019 nomor 4 persamaan lingkaran Nilai yang mungkin sebagai berikut3a + 4b – 5 = 12 . 5 = 60 maka 3a + 4b = 60 + 5 = 653a + 4b – 5 = -12 . 5 = -60 maka 3a + 4b = -60 + 5 = -55Soal ini jawabannya 5 SBMPTN 2018Jika lingkaran x2 + y2 – ax – ay – a = 0 mempunyai panjang jari-jari a, maka nilai a adalah…A. 1B. 2C. 3D. 4E. 5PembahasanJika persamaan lingkaran x2 + y2 + 2ax + 2by + c maka jari-jarinya r = . Pada soal diatas diketahuia = -1/2 ab = -1/2 ac = -aMaka nilai a = r = a = a2 = 1/4a2 + 1/42 + a = 1/2a2 + aa = a2 – 1/2a2 = 1/2a21 = 1/2a atau a = 2Soal ini jawabannya BSoal 6 SBMPTN 2018Jika panjang jari-jari lingkaran x2 + y2 + Ax + By – 4 = 0 adalah dua kali panjang jari-jari lingkaran x2 + y2 + Ax + By + 17 = 0, maka panjang jari-jair lingkaran yang lebih besar adalah…A. B. 2C. 3D. 4E. 5PembahasanMisalkan A = 2a dan B = 2b maka jari-jari lingkaran diatas = 2 = 2A2 + B2 + 4 = 4A2 + 4B2 – 6872 = 3A2 + B2A2 + B2 = = 24Jari-jari lingkaran besar = = = = 2Jawaban B
Salam Para BintangKali ini kita akan membahas materi tentang persamaan lingkaran. Persamaan Lingkaran ini adalah salah satu materi yang sering keluar di Ujian Nasional, UTBK SBMPTN dan ujian masuk PTN lainnya. Untuk itu, sangat perlu dipahami bagaimana materi ini bermanfaat bagi kita ke depannya. Lingkaran mungkin sering dan sudah biasa kita dengarkan, apalagi dari mulai kita pada tingkat sekolah dasar dah belajar dan mengenal lingkaran. Nah, saat ini kita bahas Bentuk Umum Persamaan lingkarannya ya. Oke. Langsung saja kita bahas materinya secara lengkap ya. A. Pengertian LingkaranLingkaran adalah tempat kedudukan titik-titik yang berjarak sama terhadap sebuah titik tertentu yang digambarkan pada bidang Kartesius. Jarak yang sama disebut jari-jari lingkaran dan titik tertentu disebut pusat lingkaran. Bentuk persamaan lingkaran ditentukan oleh Letak pusat lingkaran Panjang jari-jariPersamaan lingkaran memiliki dua bentuk persamaan yaitu persamaan lingkaran dengan pusat O0,0 dan pusat A p,q sebagai beriku1. Persamaan Lingkaran dengan Pusat O0,0 Persamaan lingkaran dengan pusat O0,0 dinyatakan dengan persamaan sebagai berikut a. Cara Menetukan Jari-jari Lingakaran Ada beberapa ketentuan dalam menentukan jari-jari,antara lain- Jika diketahui garis yang ditarik melalui 2 titik pada keliling lingkaran serta melalui pusat 1 Tentukan jari-jari lingkaran jika titik A9,5 dan B3,-3. pada lingkaran, serta AB merupakan diameter lingkaran. PenyelesaianDiketahui titik A9,1 dan titik B3,-3, dengan menggunakan rumusmaka -Titik Ax1,y1 dilalui lingkaran x2 + y2 = r2, maka jari-jari dirumuskan dengan Contoh 2Tentukan jari-jari lingkaran jika titik A4,3 pada lingkaran x2 + y2 = r2PembahasanKarena titik A4,3 melalaui lingkaran x2 + y2 = r2 maka - Diketahui garis ax + by + c = 0 menyinggung lingkaran Untuk menentukan jari-jari dari lingkaran dapat menggunakan rumus Contoh 3Tentukan persamaan lingkaran yang berpusat di O0,0 serta menyinggung garis g 4x-3y+10 = 0 PenyelesaianDiketahui pusat 0,0 serta lingkaran menyinggung garis g 4x-3y +10 = 0 , sehingga diperoleh jari-jari b. Posisi Titik terhadap LingkaranSecara umum posisi titik Pa,b terhadap lingkaran " dapat dirumuskan dengan Titik Pa,b terletak di dalam lingkaran Titik Pa,b terletak pada lingkaran Titik Pa,b terletak di luar lingkaran Contoh 4 Tanpa menggambar pada bidang cartesius, tentukan posisi titik P terhadap lingkaran berikut ini a. titik P-1,2 terhadap lingkaran b. titik P2,-3 terhadap lingkaran c. titik P3,5 terhadap lingkaran Penyelesaian P-1,2 dan Jadi titik P-1,2 terletak di luar lingkaran P2,-3 dan Jadi titik P2,-3 terletak pada lingkaran P3,5 dan Jadi titik P3,5 terletak di dalam lingkaran Untuk memahami materi persamaan lingkaran ini dengan Pusat O0,0, maka perlu kita perbanyak berlatih soal-soal di rumah. Silahkan bahas soal-soal berikut==================================================================================================================================================Sebelumnya, jika berkenan bantu chanel youtube saya menembus 20000 subscriber dalam tahun ini ya. Terimakasih kepada yang sudah subscribe chanel youtube saya ruang para bintang dan kepada yang belum mohon dukungannya untuk subscribe ya. Ini adalah chanel pendidikan, berbagi tentang soal-soal USBN,UNBK,SIPENMARU POLTEKKES, PKN STAN, USM POLSTAT STIS,IPDN, dan Kedinasan lainnya ,UM UGM, UNDIP, UTBK SBMPTN, Ujian Masuk PTKI, tanda SUBSCRIBE di bawah ini,jika berkenan mendukung saluran pendidikan. Terimakasih SOAL 1Tentukan persamaan lingkaran pada pusat O0,0 dengan jari-jari 4 pada pusat O0,0 dengan jari-jari 4 cm dapat dinyatakan dengan persamaan maka SOAL 2Tentukan persamaan lingkaran pada pusat O0,0 dengan diameter 10 cmPenyelesaianLingkaran pada pusat O0,0 dengan diameter 10 cm Ingat r = 1/2 dari diameter, maka r = 1/2 .10 = 5 cmPersamaan lingkaran dengan pusat O0,0 dengan jari-jari 5 cm adalahmakaSOAL 3Persamaan lingkaran dengan pusat O0,0 dengan jari-jari Lingkaran dengan pusat O0,0 dengan jari-jari cm dapat dinyatakan dengan persamaan maka SOAL 4Tentukan persamaan lingkaran dengan pusat O0,0 dan menyinggung garis 12x-5y + 52=0 PenyelesaianLingkaran dengan pusat O0,0 dan menyinggung garis 12x-5y + 52=0 memiliki persamaan sebagai kita menentukan jari-jari lingkaran tersebut dengan rumussehingga diperoleh Karena r = 4 dan pusat adalah O0,0 maka persamaan lingkarannya adalahSOAL 5Jika diketahui persamaan lingkaran , maka jari-jari lingkaran tersebut adalah....PenyelesaianJari-jari lingkaran adalahSesuai dengan persamaan lingkaran maka diperolehSOAL 6Tentukanlah kedudukan atau posisi titik 5,2 terhadap lingkaran x2 + y2 = 25!PenyelesaianPada persamaan x2 + y2 = 25 diketahui nilai r2 = 25. Untuk menentukan kedudukan titik 5,2 terhadap lingkaran x2 + y2 = 25, kita bisa langsung mensubstitusikan titik tersebut ke dalam persamaan lingkarannya. Jadi, x,y = 5,2. x2 + y2 = 52 + 22 = 25 + 4 = 29. Hasil dari x2 + y2 > r2 yang menandakan kalau titik 5,2 terletak di luar lingkaran x2 + y2 = 25. SOAL 7Titik 8,p terletak tepat pada lingkaran x2 + y2 = 289 apabila p bernilai?PenyelesaianSyarat agar suatu titik tepat berada pada lingkaran adalah x2 + y2 = r2. Dengan mensubstitusi titik 8,p ke dalam persamaan x2 + y2 = 289, sehingga diperolehx2 + y2 = 289 82 + p2 = 28964 + p2 = 289p2 = 225p = 15 atau -15. Jadi, agar titik 8,p terletak tepat pada lingkaran x2 + y2 = 289, maka nilai p haruslah bernilai 15 atau Pintar dan lulus di SMA PLUS YASOP, SMA DEL dan Matauli. Khusus buat kelas XII yuk persiapkan diri untuk bisa lulus di UTBK 2021. Bimbelnya di star ed aja loh..... Hubungi 0821-6557-6215
Lingkaran merupakan bangunan yang terbentuk dari garis lengkung yang dua ujungnya berjarak sama dari titik tetap titik pusat lingkaran bangunan tersebut. Nah, persamaan lingkaran ini dipelajari untuk menentukan jangkauan maksimum dalam lingkaran. Hai Quipperian, bagaimana kabarnya? Semoga masih tetap sehat dan tambah semangat belajar ya. Jika membaca kata lingkaran, hal apa yang ada di benak Quipperian? Pasti terlintas Matematika, ya? Benar saja Quipperian, lingkaran menjadi bahasan hangat di dunia Matematika karena bentuknya yang unik. Dalam kehidupan sehari-hari pun Quipperian tidak bisa lepas dari lingkaran lho, misalnya saja roda sepeda, gelang, anting, permukaan gelas, dan masih banyak lainnya. Tidak hanya itu, jika Quipperian pernah melihat outputkinerja radar, posisi objek yang diamati pasti akan ditampilkan dalam bentuk lingkaran dengan titik-titik koordinat tertentu. Nah, kira-kira bagaimana cara menentukan jangkauan maksimum radar? Untuk menentukannya, Quipperian cukup belajar tentang persamaan lingkaran, seperti yang akan dibahas oleh Quipper Blog kali ini. Pengertian Lingkaran Menurut Quipperian, lingkaran itu apa sih? Lingkaran itu adalah garis lengkung yang kedua ujungnya berjarak sama dari titik tetap bangun tersebut. Titik tetap yang dimaksud adalah titik pusat lingkaran, sedangkan jarak antara ujung lingkaran dan titik pusat disebut jari-jari lingkaran. Persamaan Umum Lingkaran Persamaan umum lingkaran bisa Quipperian tentukan dengan sangat mudah. Perhatikan gambar berikut. Sumber Quipper Video Gambar di atas menunjukkan bahwa terdapat suatu lingkaran yang berpusat di titik C dengan koordinat a,b dan berjari-jari r. Jari-jari merupakan jarak antara titik C dan P. Misalkan titik Px,y terletak di keliling lingkaran, sehingga jarak titik P ke pusat lingkaran dirumuskan sebagai berikut. Persamaan di atas merupakan persamaan lingkaran dengan pusat Ca,b dan jari-jari r. Jika dijabarkan lebih lanjut, persamaan di atas akan menjadi Nah, persamaan 1 di atas merupakan persamaan umum lingkaran, dengan Dengan demikian, pusat dan jari-jari lingkarannya dinyatakan sebagai berikut. Titik pusat lingkaran Jari-jari lingkaran Untuk mengasah kemampuan Quipperian tentang Persamaan Umum Lingkaran, simak contoh soal berikut ini ya! Contoh Soal 1 Tentukan persamaan umum lingkaran yang berpusat di -3,4 dan menyinggung sumbu-Y! Pembahasan Pertama-tama, Quipperian gambarkan dahulu grafik lingkarannya, yaitu berpusat di -3,4 dan menyinggung sumbu-Y! Berdasarkan gambar di atas, terlihat bahwa pusat lingkarannya berada di koordinat -3,4 dengan jari-jari 3, sehingga diperoleh Jadi, persamaan umum lingkaran yang berpusat di -3,4 dan menyinggung sumbu-Y adalah Pada beberapa kasus, jari-jari lingkarannya tidak diketahui, tetapi garis singgungnya diketahui. Lantas bagaimana menentukan jari-jari lingkarannya? Perhatikan gambar berikut. Gambar di atas menunjukkan bahwa garis singgung dengan persamaan px+ qy+ r= 0 menyinggung lingkaran yang berpusat di Ca,b. Untuk jari-jarinya bisa Quipperian tentukan dengan persamaan berikut. Agar Quipperian lebih paham tentang hubungan antara lingkaran beserta garis yang menyinggungnya, simak contoh soal 2 berikut ini. Contoh Soal 2 Tentukan persamaan umum lingkaran yang berpusat di titik 5,1 dan menyinggung garis 3x– 4y+ 4 = 0! Pembahasan Jika diketahui pusat lingkaran a,b = 5,1 dan garis singgung lingkarannya 3x– 4y+ 4 = 0, maka jari-jari lingkarannya dirumuskan sebagai berikut. Dengan demikian, persamaan umum lingkarannya adalah sebagai berikut. Jadi, persamaan umum lingkaran yang berpusat di titik 5,1 dan menyinggung garis 3x– 4y+ 4 = 0 adalah Hubungan Dua Buah Lingkaran Sebelumnya, Quipperian sudah belajar tentang titik pusat, jari-jari, serta persamaan umum untuk satu buah lingkaran. Bagaimana jadinya jika lingkarannya ada dua? Misalnya, dua buah lingkaran L1dengan pusat C1, jari-jari r1dan lingkaran L2dengan pusat C2, jari-jari r2memiliki hubungan sebagai berikut. 1. L1 bersinggungan dalam dengan L2 Perhatikan gambar berikut. Berdasarkan gambar di atas, berlaku 2. L1 bersinggungan luar dengan L2 Perhatikan gambar berikut. Berdasarkan gambar di atas, berlaku 3. L1 di dalam L2 tanpa bersinggungan Perhatikan gambar berikut. Berdasarkan gambar di atas, berlaku 4. L1 saling lepas dengan L2 Perhatikan gambar berikut. Berdasarkan gambar di atas, berlaku 5. L1 berpotongan dengan L2 Perhatikan gambar berikut. Berdasarkan gambar di atas, berlaku Kelihatannya rumit ya Quipperian, tetapi jangan khawatir karena Quipper Blog akan memberikan SUPER “Solusi Quipper” untuk mengingat hubungan antara dua buah roda. Ini dia SUPERnya! Tidak hanya itu, SUPER juga akan hadir untuk membantu Quipperian dalam mengingat jarak pusat C1C2, lho. Apakah Quipperian sudah paham tentang hubungan antara dua buah lingkaran? Jika belum, coba simak contoh soal 3 berikut ini ya! Contoh Soal 3 Tentukan hubungan antara lingkaran dengan Pembahasan Pertama-tama, Quipperian harus mencari pusat dan jari-jari kedua lingkaran tersebut. Jika ditinjau, lingkaran memiliki nilai A= -10, B= 4, dan C= -167, sehingga pusat lingkarannya adalah Jari-jari lingkarannya dirumuskan sebagai berikut. Jika ditinjau, lingkaran memiliki nilai A= 6, B= -16, dan C= 57, sehingga pusat lingkarannya adalah Jari-jari lingkarannya dirumuskan sebagai berikut. Setelah itu, Quipperian bisa menentukan nilai Oleh karena 10 < √164 < 18, maka lingkaran L1berpotongan dengan lingkaran L2. Jadi, hubungan antar kedua lingkaran pada soal adalah saling berpotongan. Setelah membaca ulasan tentang persamaan lingkaran di atas, apakah Quipperian sudah semakin paham? Pada dasarnya, banyak penerapan yang bisa Quipperian gali setelah belajar tentang persamaan lingkaran ini, contohnya deteksi jangkauan radar, menentukan persamaan garis singgung pada hubungan roda-roda, menentukan persamaan lintasan pesawat tempur, dan masih banyak lainnya. Jika Quipperian masih ingin mempelajari persamaan lingkaran secara intensif, silahkan gabung dengan Quipper Video, ya. Selamat belajar dengan tutor-tutor kece Quipper Video dan temukan ratusan soal di dalamnya. Sumber Penulis Eka Viandari
soal sbmptn tentang persamaan lingkaran